7 Things I Learned from Listening to The Culture of Innovation Talk

I really enjoyed watching  “The Culture of Innovation” from MIT Technology Review.

The talk covers several interesting topics worth exploring.

  1. Permission less innovation and Innovation at the edges
  2. A culture of practice over theory
  3. The concept of Social Investing
  4. Connectivity in Communities
  5. Peripheral vision and Pattern Recognition and how they are the total opposite of focus and execution
  6. Attachment bias
  7. Cultures and sub-cultures

My favorite quote from the talk:

We so cherish focus, execution and they are the opposites of peripheral vision, pattern recognition
Peripheral vision and pattern recognition lead to discovering new ways of doing things.
Here is a link to the video interview with Joi Ito.

Thinking Through the Design of a Product is Fun

I was talking to a student. He is fascinated with a robot that cleans pipes. He had a prototype and won some awards. He wanted to discuss it.

We sat with him and brainstormed many ideas for the design at a very high level. I encouraged him to think about a different cleaner robot – one that cleans water tanks. Our discussion lasted half an hour and it was one of the most rewarding exercises I did today.

Thinking through the design of products is fun. When you do it as a small passionate group, it is even more fun. One of the reasons I hang out with a lot of engineering students.

Learning Without Learning

Most of my school and college life was spent in learning lots of facts. I also learned principles and concepts but not in any coherent manner. I was not sure why I was learning, what I was learning. Our teachers (if they knew), forgot to tell us the “Whys?”. Some of this learning was fun and enjoyable and reasonably effortless but some of it was not.
When I started working, I started learning by doing. This was way more fun since I had a context on why I had to learn certain things. I retained my knowledge better since Iusing it. When you learn by doing or learn so that you can use it, the style is very different. You learn on demand and if some of what you are learning does not make sense, you dig deeper and try to find out why something works the way it does. I will call this as exploratory learning and it certainly is a lot more effective.
I think people will learn better, if:
  1. They know why they are learning (learning by understanding the larger context)
  2. They are allowed to explore (learning by exploring and discovering)
  3. They are challenged by tasks that require learning (learning by doing)
  4. They have the freedom to learn in their own ways (Seven freedoms of Learning)
  5. We make learning as interesting as playing games
 If you are interested in this topic, please see How People Learn and Seven Freedoms of Learning.

Where is Machine Learning Being Applied?

When I give talks on Machine Learning, I often get these questions:

  • What is Machine Learning?
  • What are some Machine Learning Applications?
  • Is Machine Learning Mature?
  • Who is using Machine Learning?
  • How do we get started?

If you are using Google or Bing Search, if you get recommendations for books or other products from Amazon, if you are getting hints for the next word to type on a mobile keyboard, you are already using Machine Learning.

Here is a sample list of Machine Learning applications.

From  Apple’s Core ML Brings AI to the Masses:

  • Real Time Image Recognition
  • Sentiment Analysis
  • Search Ranking
  • Personalization
  • Speaker Identification
  • Text Prediction
  • Handwriting Recognition
  • Machine Translation
  • Face Detection
  • Music Tagging
  • Entity Recognition
  • Style Transfer
  • Image Captioning
  • Emotion Detection
  • Text Summarization

From Seven Machine Learning Applications at Google

  • Google Translate
  • Google Voice Search
  • Gmail Inbox Smart Reply
  • RankBrain
  • Google Photos
  • Google Cloud Vision API
  • DeepDream

Also, see – How Google is Remaking Itself as a “Machine Learning First” Company.

While Apple, Google, Facebook, Amazon, IBM, and Microsoft are the most visible companies in the AI space, take a look at business applications of Machine Learning.

What is Machine Learning?

What is Machine Learning? It is a common question that I get asked a lot. I wanted to find a simple, intuitive definition. After doing a few Google searches, I settled on this one from Arthur Samuel.

from Arthur Samuel (in 1959)

“[Machine Learning is the] field of study that gives computers the ability to learn without being explicitly programmed.”

It is a field of study. I like that.  I picked this after Googling and finding over 100 descriptions. Here is a shorter curated list of results from this Google Search.  From this list, you may find that Machine Learning is:

  • A technique
  • A field of study
  • An application
  • A Method
  • A type of AI
  • A sub-field of AI
  • A general term
  • A cure-all for all human problems (just kidding)
  • A data based application generator
  • A statistical method of learning from data
  • A mapping function of inputs to outputs

So, what do you think is Machine Learning?

What is Artificial Intelligence (AI)?

Artificial Intelligence (aka AI),  will have a deep impact on our lives – both positive and negative.  Like any other tool or technology, a lot depends on how we use it.  I often get asked these questions:

  • What is AI?
  • What is good about it?
  • Will it destroy jobs?
  • Will it take over humanity?
  • What do we need to do to leverage AI?

AI traditionally refers to an artificial creation of human-like intelligence that can learn, reason, plan, perceive, or process natural language. These traits allow AI to bring immense socioeconomic opportunities, while also posing ethical and socio-economic challenges.

Right now the opportunities are in research, technology development, skill development and business application development.

The technologies that power AI – neural networks, Bayesian Probability, Statistical Machine Learning have been around for several decades (some as old as the late 50’s). The availability of Big Data is bringing AI applications to life.

There are concerns about misuse of AI and a worry that it may result in uncontrolled proliferation, killing jobs in its wake. Other worries include unethical uses, unintended biases, and other problems. It is too early to take one side or the other.

Please take a look at Artificial Intelligence and Machine Learning:  Policy Paper. It looks at AI from a variety of lenses.

On Intelligence – Two Views

Anitha sent me a link and asked for my opinion about this article – Artificial Intelligence or Intelligence Augmentation. What’s in a name?

She likes everything in brief – ideally 100 words. Me, I like to pontificate, take my time (in words, I mean), and ramble a bit.

There are three reasons why I think AI as Augmenting Human Intelligence:

  1. Humans have to be in the loop to teach AI. In supervised learning, they are designing the training sets, doing feature engineering and other tweaks. In reinforcement learning they are provided with feedback through reinforcement signals.
  2. Humans will figure out where to apply AI, how to apply AI and how to interpret and improve the results.
  3. There may be some situations when the AI may be autonomous – like in space robots or in some hazardous situations where humans cannot get involved in real time.

As AI learns more and discovers new insights, humans will use them to move them to the next higher level. In my opinion, humans and AI co-evolve. This is the process of Augmenting Human Intelligence.

Machine Learning, Software Engineering and the (not so) Mysterious Relationship Between the Two

A few links on Machine Learning and Software Engineering. The first one talks about how to explain machine learning to a software engineer and why software professionals need to pay attention to ML. It is both a tool and a bit of a threat.

The second article compares the way we build software and how it differs from building ML applications.

How to Explain Machine Learning to a Software Engineer

Software engineering is about developing programs or tools to automate tasks. Instead of “doing things manually,” we write programs; a program is basically just a machine-readable set of instructions that can be executed by a computer.

Now, machine learning is all about automating automation! Instead of coming up with the rules to automate a task such as e-mail spam filtering ourselves, we feed data to a machine learning algorithm, which figures out these rules all by itself. In this context, “data” shall be representative sample of the problem we want to solve — for example, a set of spam and non-spam e-mails so that the machine learning algorithm can “learn from experience.”

Software Engineering vs Machine Learning Concepts

Not all core concepts from software engineering translate into the machine learning universe. Here are some differences I’ve noticed.

A few thoughts:

  • ML and Software development will co-evolve. Software will be used to build tools for building ML. ML will automate automation. Since software is the current tool for automation, ML will replace many of the software activities. Does this pose a threat to software profession?
  • Do we need a different mindset for building ML apps, compared to building software? What principles of software development can be reused while building ML apps?
  • Can ML help us build better software by improving the building process?
  • The software industry is one of the heaviest users of tools for automating their own work. Various low-level (assembly), high-level (Java, C++, C#) and very high-level (Python, Ruby) languages and their associated tool chains simplified building applications. Now we have tools for not only building software, but debugging, profiling, optimizing,  and managing it.  Is ML going to be another one of these tools? Will these new class of ML apps take software as input and produce better software as output?

Little Bits of Knowledge

I am changing the name of this blog to Little Bits of Knowledge.

This blog will be accessible from Little Bits of Knowledge or lbok. There are three reasons for this change.

  1. The new name reflects what I want to focus on, going forward.
  2. By removing my name, I can have more guests posting in this blog in future.
  3. I want to curate more posts and occasionally write new ones. I feel I can share and contribute better that way. This inspiration comes from Four Short Links.

So you will see shorter more frequent posts here.

ReadLog: When Leaders Think Aloud…

When leaders think aloud, it is a fascinating to listen. Satya talks about innovation, handling failures, AI, advances in cloud computing, using silicon to speed machine learning and a variety of other topics including bits of history (of Microsoft) and philosophy.

satya may 2 2017-1

Microsoft had been there, too early.  And they were too far behind on the Internet and managed to catch up.

On handling failures – instead of saying “I have an idea”, what if you said, “I have a new hypothesis”?

satya May 2 2017

Satya Nadella goes on to talk about some of their innovations (accelerating AI using FPGA), on investing in the future and the future of innovation. This article is a good read.

Q&A with Microsoft CEO Satya Nadella: On artificial intelligence, work culture, and what’s next